
Modular Specification and Dynamic Enforcement of
Syntactic Language Constraints when Generating Code

Sebastian Erdweg
TU Darmstadt, Germany

Vlad Vergu
TU Delft, Netherlands

Mira Mezini
TU Darmstadt, Germany

Eelco Visser
TU Delft, Netherlands

Abstract
A key problem in metaprogramming and specifically in generative
programming is to guarantee that generated code is well-formed
with respect to the context-free and context-sensitive constraints
of the target language. We propose typesmart constructors as a
dynamic approach to enforcing the well-formedness of generated
code. A typesmart constructor is a function that is used in place of a
regular constructor to create values, but it may reject the creation of
values if the given data violates some language-specific constraint.
While typesmart constructors can be implemented individually, we
demonstrate how to derive them automatically from a grammar,
so that the grammar remains the sole specification of a language’s
syntax and is not duplicated. We have integrated support for type-
smart constructors into the run-time system of Stratego to enforce
usage of typesmart constructors implicitly whenever a regular con-
structor is called. We evaluate the applicability, performance, and
usefulness of typesmart constructors for syntactic constraints in a
compiler for MiniJava developed with Spoofax and in various lan-
guage extensions of Java and Haskell implemented with SugarJ and
SugarHaskell.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract; I.2.2 [Automatic Pro-
gramming]: Program transformation; D.3.4 [Processors]: Run-
time environments

General Terms Languages, Design

Keywords typesmart constructors; dynamic analysis; program
transformation; generative programming; well-formedness checks;
abstract syntax tree; Spoofax; SugarJ

1. Introduction and motivating example
Metaprograms process other programs as data, for example, to
realize program optimizations, to compile a program to another
language, or to inject monitoring code. A traditional problem of
metaprogramming is to guarantee that generated code is well-
formed according to the syntax and type system of the target lan-
guage. Such a guarantee is important because it provides valuable
feedback to developers of metaprograms and rules out a whole

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2577080.2577089

compile1 :
Lambda(x, atype, rtype, body)
->
|[new lambda.Function<∼atype, ∼rtype>{

public ∼rtype apply(∼atype ∼x) { ∼cbody; }
}

]|
where cbody := <compile> body

compile2 :
Lambda(x, atype, rtype, body)
->
NewInstance(

None(),
ClassOrInterfaceType(
TypeName(

PackageOrTypeName(Id("lambda")),
Id("Function")),

Some(TypeArgs([atype, rtype]))),
[],
Some(ClassBody(
[MethodDec(

MethodDecHead(
[Public()], None(), rtype, Id("apply"),
[Param([], atype, Id(x))], None()),

cbody)])))
where cbody := <compile> body

Figure 1. Compilation of a lambda expression to Java by transfor-
mation of the syntax tree, with and without using concrete syntax.

class of errors that would lead to subsequent metaprogramming
tools to fail or even to unsound behavior of the generated program
at its run time.

For example, consider the program transformations compile1
and compile2 displayed in Figure 1. Both transformations are imple-
mented in the strategic term-rewriting language Stratego [27] and
compile a lambda expression to one and the same anonymous Java
class. The lambda expression binds variable x of type atype and
has body body with result type rtype. From such a lambda expres-
sion, each transformation generates an anonymous class instance
of interface lambda.Function and defines a public method apply that
takes a parameter corresponding to the lambda-bound variable. The
body of the generated method is defined by a recursive call of the
transformation on the body of the lambda expression.

The second transformation compile2 uses untyped abstract syn-
tax (similar to s-expressions) to describe the generated code. As
the abstract syntax of the target language Java is rather compli-
cated, it is very easy to accidentally generate ill-formed code in
compile2. For example, a missing Id tag around a name such as

241

"lambda" or a forgotten None or Some, which are used to represent
optional nodes. Such little mistakes are hard to trace and can entail
severe problems that may break the rest of the processing pipeline,
such as a static analysis or a pretty printer that expect syntactically
well-formed code as input. The first transformation compile1 avoids
some of these mistakes by using concrete Java syntax in the gen-
eration template, which is parsed with an enriched Java grammar
before the transformation is applied [26]. For example, the parser
will automatically produce a well-formed abstract syntax tree for
the qualified name lambda.Function that contains all necessary Id
tags.

However, despite using concrete syntax and a parser, even
compile1 is not safe at all and can generate ill-formed code: When
splicing external data into a generation template (designated by ∼
in the template of compile1), the injected data must match the ex-
pected syntactic form. For example, both transformations assume
that the types of lambda expressions have a Java encoding, because
atype and rtype are injected unchanged into the generated Java
code. Whether this is true or not cannot be answered by looking
at Figure 1 alone. Instead, a (potentially global) data-flow anal-
ysis is necessary to statically determine the type encoding of the
lambda expressions that are passed to compile as input. Similarly,
compile assumes that the recursive compile call on the lambda-
expression body results in a valid Java method body. Again, a data-
flow analysis is required to ensure this statically. These examples
only consider the syntactic structure of generated code; guaran-
teeing that generated code is well-typed would be even harder. In
particular, due to Stratego’s sophisticated language features (for ex-
ample, rule overloading, generic traversals, or dynamically scoped
rewrite rules), an efficient static analysis would be hard to de-
sign and most likely very specific to the Stratego language and
not reusable for other metaprogramming systems. Stratego is not
the only metaprogramming system that fails to guarantee the well-
formedness of generated code. In particular, metaprograms written
in similarly flexible programming languages such as Python, Ruby,
or JavaScript exhibit the same problem.

We propose dynamic checking of language-specific invariants
on generated code at construction time using typesmart construc-
tors. A typesmart constructor is a conventional function that acts
like a regular constructor and creates data values. However, in con-
trast to a regular constructor, a typesmart constructor may reject the
creation of a value if this would violate a language-specific invari-
ant. For example, a typesmart version of the constructor Param used
in the generated method header in Figure 1 would reject the con-
struction of parameters where the parameter name is not wrapped
in an Id syntax-tree node or where the parameter type atype is not a
well-formed syntax tree representing a Java type. To communicate
metadata about a program (such as a syntactic sort or type), type-
smart constructors read and write annotations on the abstract syn-
tax tree. For example, the typesmart version of constructor Param
would query the annotation of atype to identify its syntactic sort.

In this paper, we particularly focus on the syntactic well-
formedness of generated programs and how to modularly specify
and enforce syntactic well-formedness with typesmart construc-
tors. Typically, a language’s syntax is specified centrally by a gram-
mar. It is bad practice to duplicate such specification because this
impedes consistency and maintainability. Instead, we want to re-
tain the grammar as a modular specification of a language’s syntax:
Typesmart constructors should neither duplicate information of the
grammar, nor should the grammar be coupled to typesmart con-
structors. To this end, we devised a transformation that extracts
the conditions for syntactic well-formedness from a grammar and
generates corresponding typesmart constructors automatically. For
enforcing the generation syntactically well-formed programs , the
application of typesmart constructors in place of regular construc-

tors should be transparent to developers of program transformations
and should not require any change to existing transformations. To
achieve this, we designed runtime-system support for typesmart
constructors that does not rely on the user’s discipline and that can
be activated and deactivated modularly. In summary, we make the
following contributions:

• We propose typesmart constructors for dynamically checking
language-specific well-formedness criteria on generated code.
Typesmart constructors are applicable in any metaprogramming
system
• We designed and implemented a transformation that automat-

ically derives typesmart constructors from a language’s syntax
definition to dynamically check the syntactic structure of gen-
erated code.
• We incorporated support for typesmart constructors in the run-

time system of Stratego to transparently enforce the usage of
typesmart constructors in place of regular constructors. This es-
tablishes the global invariant that all generated code is well-
formed at all times, and transformations do not have to be
adapted.
• We evaluate the applicability, performance, and usefulness of

typesmart constructors for syntactic constraints by investigating
their application in a compiler for MiniJava written in Stratego
and in various language extensions of Java and Haskell imple-
mented in SugarJ and SugarHaskell. Using typesmart construc-
tors, we found 27 bugs in existing, tested program transforma-
tions.

In this paper, we explore the standard trade-off between static
and dynamic analyses: On the one hand, dynamic analyses are
easier to define and understand than static data-flow analyses (in
particular, if sophisticated metalanguage features should be sup-
ported). On the other hand, static analyses deliver feedback at an
earlier stage and do not entail any runtime overhead. We see this
work as an initial step to support sophisticated language-specific
invariants in metaprogramming systems with sophisticated meta-
language features. We envision future work on hybrid analyses that
reduce the runtime overhead and deliver feedback earlier when pos-
sible, and on dynamic analyses that enforce semantic properties of
a language at program-generation time.

2. Typesmart constructors
Consider a constructor C with signature

C :: A -> B.

A typesmart constructor for C is any function f with signature

f :: A -> (fail or B∗)

that satisfies

f(a) = fail or f(a) = C(a).

Here, B∗ denotes the type B augmented with annotations of aux-
iliary data such as the syntactic sort or the type of a term. We as-
sume term equality (=) ignores annotations. Accordingly, a type-
smart constructor for C behaves exactly like C except that it may
fail or annotate auxiliary data to the constructed value.

Typesmart constructors can be used to enforce invariants about
constructed data. For example, here are two typesmart list construc-
tors that enforce that all list elements are even integers:

nil() = Nil()
cons(x, xs) =
if x % 2 == 0
then Cons(x, xs)
else fail

242

Similar functionality is supported by contracts on structures in
Racket [21]. Indeed, typesmart constructors can be seen as a form
of flat contracts [11] for constructors. However, in contrast to con-
tracts, typesmart constructors are allowed to modify the resulting
value by adding annotations. For example, we can use annotations
to efficiently ensure that the tail of the constructed list consists of
even integers as well:

nil() = Nil()
cons(x, xs) =
if x % 2 == 0 && get-anno(xs, "list-of-even") == True
then put-anno(Cons(x, xs), "list-of-even", True)
else fail

Functions get-anno and put-anno read and write a named anno-
tation of a term, respectively. Without annotations, the typesmart
constructor cons would have to recheck the tail of the list each time
another element is added, which would change the asymptotic com-
plexity of cons from constant to linear.

An important property of tree-like terms is that they are al-
ways built bottom-up. Accordingly, the arguments of a constructor
have themselves been previously constructed by other constructors,
which may have been typesmart or regular ones. We use annota-
tions in typesmart constructors for three purposes:

• To ensure that the arguments of a typesmart constructor have
themselves been constructed by a typesmart constructor.
• To ensure that all required invariants have been enforced on

arguments of a typesmart constructor.
• And more generally, to provide a channel of communication

from children to parents during the construction of terms.

We can leverage these properties of typesmart constructors to en-
force invariants about terms. For the special and important case
where we generate programs, we can use typesmart constructors
to enforce language-specific constraints. In this paper, we focus on
the enforcement of syntactic language constraints.

3. Typesmart constructors
for syntactic language constraints

Let us consider a simple language with variables, expressions, and
statements (names in curly braces denote the desired constructor
names):

Var ::= String {Var}
Exp ::= Var {VarExp}

| Integer {Num}
| Exp + Exp {Add}

Stm ::= Var = Exp {Assign}
| Stm; Stm {Seq}

We can define the typesmart constructors for this language as
shown in Figure 2. Each constructor checks that its arguments have
the appropriate sort. For example, the constructor for assignments
requires that the first argument is a variable and the second argu-
ment is an expression. An assignment itself is of sort statement.
Essentially, the typesmart constructors of Figure 2 ensure that all
generated programs adhere to the above grammar.

In statically typed programming languages, the syntactic struc-
ture of our simple language can be easily encoded using, for ex-
ample, algebraic data types. This would statically guarantee that all
generated programs adhere to the grammar. We are interested in
achieving similar guarantees in dynamically typed languages with
sophisticated language features such as generic traversals. Enforc-
ing syntactic constraints with typesmart constructors poses the fol-
lowing challenges:

var(v) =
if is-string(v)
then put-anno(Var(v), "sort", "Var")
else fail

varexp(v) =
if get-anno(v, "sort") == "Var"
then put-anno(VarExp(v), "sort", "Exp")
else fail

num(n) =
if is-integer(n)
then put-anno(Num(n), "sort", "Exp")
else fail

add(e1, e2) =
if get-anno(e1, "sort") == "Exp" &&

get-anno(e2, "sort") == "Exp"
then put-anno(Add(e1, e2), "sort", "Exp")
else fail

assign(v, e) =
if get-anno(v, "sort") == "Var" &&

get-anno(e, "sort") == "Exp"
then put-anno(Assign(v, e), "sort", "Stm")
else fail

seq(s1, s2) =
if get-anno(s1, "sort") == "Stm" &&

get-anno(s2, "sort") == "Stm"
then put-anno(Seq(s1, s2), "sort", "Stm")
else fail

Figure 2. Typesmart syntax constructors for a simple language
with variables, expressions, and statements.

• Not all terms correspond to user-defined sorts. For example,
no user-defined sort exists for lists [a,b,c], tuples (a,b,c), or op-
tional elements None() and Some(t). Moreover, the constructors
for lists, tuples, and optional terms are inherently polymorphic.
For example, for any nonterminal S, the constructor Some gen-
erates a term of sort S? given a term of sort S.
• Many languages allow the injection of terms without delimiting

constructors. For example, it is often the case that any valid term
of sort Variable can be used as a valid term of sort Expression.
Typesmart constructors need to consider such injections when
checking the sorts of the constructor arguments.
• If a constructor occurs multiple times in a grammar (for exam-

ple, due to language composition), the constructor may be able
to produce terms of alternative sorts for the same arguments.
Technically, such a term would be valid with respect to all alter-
native sorts and no preference can be safely made at this point.

We resolve these issues by (i) built-in support for primitive
polymorphic term constructors for lists, tuples, and optionals, (ii)
explicit support for a subsort relation that corresponds to term
injections, and (iii) alternative result sorts for constructor calls
that satisfy multiple productions simultaneously (similar to union
types). We provide these features as a library that implementors
of typesmart constructors for syntactic constraints can use. In the
following, we present the exact definition of this library.

3.1 A library for checking syntax sorts
We define an auxiliary library that provides a high-level function
has-sort(t, s) -> Bool to check whether term t has sort s. Function
has-sort supports primitive polymorphic terms, alternative sorts,
and checks a term with respect to subsorting. To this end, has-sort
is configurable with a user-defined subsort relation.

We define function has-sort formally via inference rules. Fig-
ure 3 shows the abstract representation of terms t and sorts s that
we use in the definition of has-sort. A term is either constructed

243

c ::= string constructors
t ::= c(t, . . . , t) constructed s ::= string
| string string literals | String
| [t, . . . , t] lists | List(s)
| (t, . . . , t) tuples | Tuple(s, . . . , s)
| None | Some(t) optionals | Option(s)

alternatives | Alt(s, s)

Figure 3. Abstract syntax for terms t and sorts s.

STRING
is-string(t)
t : String

LIST
t1 : s · · · tn : s

[t1, . . . , tn] : List(s)

TUPLE
t1 : s1 · · · tn : sn

(t1, . . . , tn) :Tuple(s1, . . . , sn)

OPT1
None :Option(s)

OPT2 t : s
Some(t) :Option(s)

ALT1
t : s1

t :Alt(s1, s2)
ALT2

t : s2
t :Alt(s1, s2)

ANNO
get-anno("sort", t) ≡ s

t : s

SUB
t : s1 s1 <: s2

t : s2
TRANS

s1 <: s2 s2 <: s3
s1 <: s3

Figure 4. Definition of function has-sort, written as t : s.

through a constructor application, or it is a list, a tuple, or an op-
tional term None or Some(t). A sort is either a user-defined sort
or represents a list, a tuple, an option, or an alternative of two other
sorts. We define function has-sort in Figure 4, where we write a call
has-sort(t, s) in relational style t : s.

The definition of has-sort is mostly straight-forward. A literal
string has sort String, a list with elements of sort s has sort List(s),
an Option sort describes terms None and Some, a tuple has sort
Tuple with matching component sorts. For alternatives Alt(s1, s2),
it suffices if the term has either sort s1 or sort s2. If a term already
has a sort annotation (that is, it was constructed by a typesmart
constructor), we compare the annotated sort to the required one s
in rule ANNO. To support terms annotated with alternative sorts,
we use a special equivalence relation ≡ that has special treatment
for alternative sorts:

EQ1
s1 ≡ s

Alt(s1, s2) ≡ s
EQ2

s2 ≡ s

Alt(s1, s2) ≡ s

That is, if the constructed term adheres to multiple sorts, it suffices
if one of them matches the required sort s. Otherwise, the equiva-
lence relation checks for syntactic equality.

Finally, function has-sort as defined in Figure 4 employs a
subsumption rule SUB: If a term t has sort s1 and sort s1 is a
subsort of sort s2, then t also has sort s2. Here, the subsort relation
corresponds to valid term injections. For example, if our language
allows the occurrence of variables in expressions Exp ::= Var, then
Var would be subsort of Exp (Var <: Exp). The subsort relation is
transitive as declared by rule TRANS. Apart from that, the subsort
relation is unspecified and can be configured according to the
syntactic constraints of a language, as we show in the following
example.

3.2 Example language and example term construction
Using the function has-sort and the subsort relation, we can imple-
ment typesmart constructors that comply with the challenges from

the beginning of this section. Let us consider the following small
example language that highlights issues we observed in grammars
of real-world languages.

Var ::= String {Var}
Exp ::= Var

| "[" Exp* "]" {Exps}
Param ::= String {Var}
Proc ::= "proc" Param? "=" Exp {Proc}

Programs of this language are described with primitive terms for
lists (Exp*) and optionals (Param?), perform term injection of vari-
ables into expressions, and variables and parameters share the con-
structor name Var and can be used interchangeably. Using the li-
brary from the previous subsection, we can define typesmart con-
structors for this language as follows:

var(v) =
if is-string(v)
then put-anno(Var(v), "sort", Alt("Var","Param"))
else fail

exps(xs) =
if has-sort(xs, List("Exp"))
then put-anno(Exps(xs), "sort", "Exp")
else fail

proc(p, e) =
if has-sort(p, Option("Param")) && has-sort(e, "Exp")
then put-anno(Proc(p,e), "sort", "Proc")
else fail

Var <: Exp = True

These typesmart constructors require all features our has-sort
library provides: primitive terms, term injection, and alternative
sorts. Let us illustrate these features by constructing the term:

Proc(Some(Var("x")), Exps([Var("y")]))

1. The term Var("x") gets assigned sort Alt("Var","Param") since
"x" is a string.

2. The term Some(Var("x")) has sort Option(Alt("Var","Param")).

3. The term Var("y") gets assigned sort Alt("Var","Param") since
"y" is a string.

4. The term [Var("y")] has sort List(Alt("Var","Param")).

5. The term Exps([Var("y")]) gets assigned sort "Exp" since
the argument to Exps is a list of expressions as checked
by has-sort(xs, List("Exp")): According to the definition of
has-sort in Figure 4, this holds if all elements of xs have sort
Exp. However, the only element of xs is Var("y"), which has a
sort that does not match: Alt("Var","Param") 6≡ "Exp". There-
fore, we cannot use rule ANNO just yet. Instead, we first have to
apply rule SUB using Var <: Exp to get Var("y") : "Var", which
we can discharge using ANNO and Alt("Var","Param") ≡ "Var".

6. The full term Proc(Some(Var("x")), Exps([Var("y")])) has sort
"Proc": We first check the optional parameter, which succeeds
due to rules OPT2, ANNO, and Alt("Var","Param") ≡ "Param".
Then we check the body Exps(...), which succeeds immediately
using ANNO since it has a sort annotation Exp as required.

From this example term construction, we observe that at the
time we constructed the Var terms, we did not yet know whether we
need the terms as variables or as parameters. Since the Var terms ad-
here to the structure of both sorts (the abstract syntax overlaps), we
marked the terms with an alternative sort that allows their usage in
either contexts. Indeed, this was required in our example, because
Var("x") was used as a parameter whereas Var("y") was used as a
variable. Furthermore, we observe that due to alternative sorts and
subsorts, there is quite a number of different cases to consider when

244

checking the sort of an argument. For example, for the body of a
procedure, valid argument sorts are Exp, Var, Alt("Var","Param"),
but not Param and not Proc. Our library function has-sort greatly
reduces the effort of writing typesmart constructors by taking care
of all alternatives for saturating a sort requirement.

Nevertheless, the implementation of manual typesmart con-
structors is tedious, does not reflect the enforced language con-
straints declaratively, and duplicates knowledge about the syntax
of the target language. In the subsequent section, we show that the
grammar of the target language in fact can serve as a declarative
and modular specification for typesmart constructors that enforce
the corresponding syntactic constraints.

4. Deriving typesmart syntax constructors
A grammar should be the ultimate reification of all syntactic con-
straints a language possesses. Typesmart constructors enforce the
syntactic constraints of a language dynamically while programs of
the language are generated. In the previous section, we required
the manual implementation of typesmart constructors. This lim-
ited modularity of the language definition since knowledge about
the syntactic constraints is duplicated in the grammar and type-
smart constructors. Moreover, the procedural implementation of
typesmart constructors is neither declarative nor simple (as we shall
see below).

We have developed a transformation that automatically derives
typesmart constructors from a language’s grammar. Our transfor-
mation assumes a grammar defined with SDF [25]. From such a
grammar, it generates typesmart constructors as follows.

Regular productions with constructor (N ::= rhs {C}). From
the right-hand side rhs, we extract the expected argument sorts
(as of Figure 3) of the constructor C. First, all lexical tokens are
removed; they are not part of the abstract syntax tree that we are
constructing. For the rest of rhs, a nonterminal name is its own sort,
an optional expression e? has sort Option of the sort of e, a list e*
has sort List of the sort of e, and so on.

We generate exactly one typesmart constructor for each con-
structor for a given arity (number of arguments sorts). The type-
smart constructor uses function has-sort (Section 3.1) to test each
actual argument for conformance to the expected argument sort. If
multiple productions define the same constructor C with the same
arity, the single typesmart constructor we generate will test the
actual arguments against each list of expected argument sorts. If
the actual arguments conform to no production, the typesmart con-
structor fails and rejects the building of an ill-formed term. If the
actual arguments conform to exactly one production, the typesmart
constructor returns a term of the result sort of this production. If
the actual arguments conform to multiple productions, the type-
smart constructor returns a term of an alternative sort Alt(s1, s2)
with one alternative per successful production.

For example, for the productions

A ::= "(" A A ")" {C}
B ::= "{" B B "}" {C}

we generate a single typesmart constructor

c(x,y) =
if has-sort(x, "A") && has-sort(y, "A")
then if has-sort(x, "B") && has-sort(y, "B")

then put-anno(C(x,y), Alt("A", "B"))
else put-anno(C(x,y), "A")

else if has-sort(x, "B") && has-sort(y, "B")
then put-anno(C(x,y),"B")
else fail

If the constructor arguments fit both productions, the resulting
tree has an alternative sort. Otherwise, if the arguments only fit

one production, the resulting tree has the sort this production. If
the arguments match neither production, the typesmart constructor
fails.

As the number of constructor arguments and the number of
productions with equally-named constructors grows, the imple-
mentation of the corresponding typesmart constructor becomes te-
dious and error-prone. For example, the largest typesmart construc-
tor generated for Java has 7 arguments and comprises more than
30 lines of code. Since our transformation generates these con-
structors from a grammar automatically, language developers do
not have to bother with the implementation details of typesmart
constructors.

Injection productions (N ::= A). We use injection productions to
define the subsort relation, over which function has-sort is param-
eterized. For each injection production N ::= A, we add the fact
(A <: N) to the definition of the subsort relation (<:). In addition,
we augmented function has-sort to check for cyclic injections when
using rule SUB. Otherwise, an infinite loop A <: B <: A <: ... would
make our dynamic analysis loop.

Lexical productions (N ::= [a-z]+). SDF supports lexical pro-
ductions, which do not yield nodes in the abstract syntax tree. In-
stead, a lexical production always yields a string literal represent-
ing the parsed fragment of the input string. To support lexical pro-
ductions in typesmart constructors, we install the nonterminal of a
lexical production as a subsort of the sort String (N <: String).

Renamed nonterminals. SDF supports the renaming of non-
terminals when importing a module. This provides a means for
avoiding name clashes between nonterminals defined in inde-
pendent modules. For example, one module may define a pro-
duction Exp ::= Exp "+" Exp {Plus}. Another module may want
to use a renamed version JavaExp of nonterminal Exp like this:
Body ::= JavaExp {Body}. However, this is problematic for the
typesmart constructor of Body, which expects a single argument
of the renamed sort JavaExp. However, the concrete argument will
have sort Exp. Essentially, the original and the renamed nonter-
minal are equivalent: We can use either original or renamed sort
where the other one is expected. We encode this equivalence using
the subsort relation: For each renaming of N to N’, we install N as a
subsort for N’ and vice versa (N <: N’ and N’ <: N). The check for
cyclic injections applies here as well to prevent infinite looping.

Implementation. We implemented the derivation of typesmart
constructors as a Stratego transformation that accepts an SDF
grammar as input and outputs Stratego code that implements the
generated typesmart constructors. For evaluation, we applied our
transformation to a composed grammar consisting of productions
for SDF and Stratego, which results in 5595 source lines of Strat-
ego code implementing a total of 361 typesmart constructors and
installing a total of 262 subsort relationships. Furthermore, we
applied our transformation to a grammar for Java, which results
in 3989 source lines of Stratego code implementing a total of 206
typesmart constructors and installing a total of 307 subsort relation-
ships. Given that the grammar provides a full specification of the
syntactic constraints of a language, all of this generated code pro-
vides useful but redundant information. We would not have wanted
to implement typesmart constructors for these languages by hand,
and our generator provides required tool support for automatically
deriving typesmart constructors from a grammar. Especially, this
permits the modular evolution of the grammar, since typesmart
constructors can simply be regenerated.

245

5. Run-time support for typesmart syntax
constructors in Stratego

The idea of typesmart constructors is applicable in any language
that provides an explicit notion of construction. However, manually
applying typesmart constructors is cross-cutting the whole transfor-
mation: Every occurrence of a regular constructor must be replaced
by a typesmart constructor. Moreover, the well-formedness of gen-
erated code relies on the users’ discipline to actually call typesmart
constructors in place of regular constructors. Especially, when us-
ing third-party libraries, such discipline cannot be expected.

To remedy this situation, we integrated support for typesmart
constructors into the runtime system of Stratego. Specifically, we
modified the way Stratego terms are constructed such that a call
to a regular constructor is always redirected to the corresponding
typesmart constructor. Since this redirection is modularly defined,
automatic, and transparent to users, we obtain the following advan-
tages: (i) transformations do not have to be changed in any way, (ii)
transformations can rely on the global guarantee that all abstract
syntax trees represent syntactically well-formed programs during
the whole execution, and (iii) dynamic checks can be modularly ac-
tivated and deactivated. In this section, we describe the augmented
architecture of the Stratego runtime system.

Stratego [27] is a declarative language for the transformation of
syntax trees. Conceptually, the runtime system of Stratego can be
separated into two components: (i) the abstract syntax trees, gener-
ally referred to as terms, and (ii) the rewriting rules that transform
terms. Stratego terms are immutable data objects that may have at-
tachments. Attachments are used to store metadata about a term as
required in different execution contexts, such as parent attachments
pointing to the parent of a node or origin information establishing
a link back from the result of a transformation to its input.

The Stratego runtime system produces terms via term factories.
A term factory provides methods for the construction of different
term types (integer, string, list, tuple, constructor application) and
produces the required term. Following the decorator pattern, a
basic term factory may be wrapped by other term factories to
realize alternative semantics, such as installing attachments for
parent references or for origin tracking.

When executing a Stratego transformation, a single term fac-
tory is associated to the execution context of the Stratego runtime
system. All term construction required by the transformation is del-
egated to this term factory. To enforce the application of typesmart
constructors in place of regular constructors, we implemented a
special term factory for typesmart term construction and changed
the Stratego runtime system to use this term factory by default. In
summary, the runtime support for typesmart constructors comprises
the following components:

Typesmart term factory. A designated term factory for typesmart
term construction that delegates term construction to typesmart
constructors if available.

Term-sort attachment. Term metadata that indicates the sort of
the term. This attachment is read and installed by typesmart
constructors.

Typesmart primitives. Primitive functions for setting and retriev-
ing term-sort attachments (put-anno and get-anno in our previ-
ous examples), and a primitive function for intentionally build-
ing an unsafe term. The latter primitive may only be used within
typesmart constructors to build the resulting term after the ar-
guments have been checked.

Has-sort library. The library described in Section 3.1, which is
used within typesmart constructors.

Typesmart constructors. Language-specific typesmart construc-
tors of the form described in Section 2. These may be automati-
cally generated from an SDF syntax definition by our generator
described in Section 4.

Caching typesmart term factory. A term factory which caches
sorts of successfully constructed terms for later reuse without
repeating validation.

When a user transformation requests the construction of a term
C(t1, . . . , tn), this request is served by the augmented Stratego
runtime system as follows.

1. The execution context dispatches the construction request to
its term factory. Let us assume this term factory is a simple
typesmart term factory without caching.

2. The typesmart term factory checks whether a typesmart con-
structor for constructor C with arity n exists. We represent type-
smart constructors as regular Stratego transformations named
smart- followed by the name of the constructor. Accordingly,
we check for the existence of a Stratego transformation smart-C
with arity n in the execution context.
(a) If no transformation smart-C with arity n exists, then
no typesmart factory has been defined for C. The typesmart
term factory then calls a standard term factory that creates an
unchecked term and returns it to the user’s transformation. For
example, this happens for lists, tuples, and optionals.
(b) If a transformation smart-C with arity n exists, the type-
smart term factory dispatches the construction of C(t1, . . . , tn)
to this transformation as described in Section 3 with details as
follows.

3. In the second case (b), the typesmart constructor checks the
constructor arguments using a Stratego implementation of func-
tion has-sort. The subsort relation that has-sort uses is provided
through additional transformation definitions in the execution
context. Function has-sort uses a primitive function to retrieve
the sort attachment of a term. If all arguments conform to the
expected sorts, the typesmart constructor uses a primitive func-
tion to build an unchecked term through a standard term factory
(this is needed to avoid cycles). Subsequently, the typesmart
constructor applies a primitive function to install the result sort
as a term-sort attachment. This term is returned.

4. A successful invocation of a typesmart constructor indicates
a morphologically correct term and results in the term with
installed term-sort attachment. A failed invocation of a type-
smart constructor indicates a violation of the term signature and
causes the execution of the transformation to be aborted.

In essence, the typesmart term factory only dispatches calls to type-
smart constructors which are responsible for the actual verification
and construction of terms.

Furthermore, we provide a term factory that caches the result
sort of typesmart constructors to alleviate the runtime overhead of
typesmart constructors. Our cache assumes that the result sort of a
typesmart term construction only depends on the constructor name,
the constructor’s arity, and the sorts of the constructor arguments.
This assumption holds for all typesmart constructors generated by
our tool from an SDF grammar (Section 4). When the construction
of a term is requested, the caching term factory checks whether a
construction with the same constructor name, arity, and argument
sorts occurred before. If not (cache miss), then the construction
is delegated to the non-caching typesmart term factory. We cache
the sort of the resulting term in an internal map. If a construction
with the same constructor name, arity, and argument sorts occurred
before (cache hit), we retrieve the result sort from the internal
map, build an unchecked term, and install the cached result sort.

246

Thus, a cache hit avoids calling out to the Stratego transformation
implementing the typesmart constructor, which furthermore avoids
running function has-sort on all arguments.

Through the integration of typesmart constructors at the Strat-
ego level, any technology building on top of Stratego enjoys dy-
namic enforcement of syntactic language constraints, too. Notably,
Spoofax [16] and SugarJ [8] use Stratego as a metalanguage for the
implementation of language analyses and semantics. We evaluate
typesmart constructors and our implementation in Stratego through
application in Spoofax and SugarJ.

6. Case studies
We evaluate the applicability and usefulness of the typesmart con-
structors by using them inside Spoofax [16] and SugarJ [7, 8].
Spoofax is a language workbench for agile development of exter-
nal textual languages with IDE support. SugarJ is an extensible
language that encapsulates language extensions as regular base-
language modules that can be activated via import statements. Both
Spoofax and SugarJ use Stratego as underlying term transforma-
tion language with which a language developer/extender can define
static analyses, program semantics, and semantic editor services.

We extended Spoofax such that it generates typesmart construc-
tors from SDF definitions as explained in Section 4. This generation
step is applied during compilation of a Spoofax language project.
The typesmart constructors are compiled and loaded together with
the user-supplied syntax, analysis rules, semantics, and editor ser-
vices. We employ the instrumented Stratego runtime system de-
scribed in Section 5 to transparently enforce syntactic validity dur-
ing analysis, desugaring, and while executing semantic editor ser-
vices.

We extended the SugarJ system to generate and use typesmart
constructors for the base language. A SugarJ language extension
extends the base language by defining additional syntax (as an SDF
grammar), additional static analysis for the extended syntax (in
Stratego), a desugaring from the extended syntax to the base lan-
guage (in Stratego), and editor services for the extended syntax. We
modified SugarJ to generate additional typesmart constructors for
every user-defined extension. When an extension is activated via an
import statement, we merge the typesmart constructors of the base
language with the typesmart constructors of the extension. Again,
we use the augmented runtime system of Stratego to transparently
enforce syntactic validity.

To evaluate the applicability and usefulness of typesmart con-
structors, we applied them in Spoofax and SugarJ. In Spoofax, we
applied typesmart constructors in a project that implements a com-
piler for a subset of Java. In SugarJ, we applied typesmart construc-
tors for validating language extensions of Java and Haskell (trans-
formations are implemented in Stratego). In addition, we evaluated
the performance implications of typesmart constructors by measur-
ing and comparing the execution time of a lambda-calculus com-
piler running with regular constructors only, with typesmart con-
structors, and with cached typesmart constructors.

6.1 MiniJava compiler
We evaluated the Spoofax integration of typesmart constructors by
application to the Spoofax-based MiniJava implementation. The
MiniJava compiler is a Stratego program that transforms MiniJava
programs into their equivalent counterpart written in the Jasmin as-
sembler language 1 for the Java Virtual Machine. The transforma-
tion translates a MiniJava syntax tree into Jasmin syntax tree, which
is subsequently pretty-printed. As described above, we generated a
library of Jasmin and MiniJava typesmart constructors from syntax
definitions of Jasmin and MiniJava, respectively.

1 http://jasmin.sourceforge.net

The MiniJava compiler was implemented, maintained, and thor-
oughly tested by a Stratego and Spoofax expert. Accordingly, we
expected that the MiniJava compiler produces syntax trees that con-
form to the syntactic constraints of Jasmin. We tested the MiniJava
compiler by applying it to 233 programs written in MiniJava. To our
surprise, this gradually uncovered more than 20 bugs in the Jasmin
generator, which we repaired. The uncovered defects caused mor-
phologically incorrect Jasmin ASTs to be generated by the com-
piler. We describe the errors we found below.

The majority of violations involved missing constructors that
wrap references to classes, fields, and labels. For example, we
changed the compiler as follows:

Reference("java/io/PrintStream")
 Reference(CRef("java/io/PrintStream"))

GOTO(end)
 GOTO(LabelRef(end))

When working with abstract syntax trees, this is a typical problem:
The abstract syntax requires more intermediate nodes than seems
necessary for a programmer. Therefore, it is easy to forget some of
these nodes, such as LabelRef. Note that using concrete syntax in
the generation template [26] would only have resolved the former
violation but not the latter violation, because the sort of end is
unknown at compile time.

Another significant part of the morphological errors were
caused by mismatching types, such as integers used instead of
strings, and ill-placed or missing constructors:

ALOAD(n)
 ALOAD(VarNum(<int-to-string> n))

JBCVarDecl(
VarNum(n), x, <to-jbc> t,
LabelRef(START()), LabelRef(END()))

JBCVarDecl(

<int-to-string> n, x, JBCFieldDesc(<to-jbc> t),
LabelRef(START()), LabelRef(END()))

In the MiniJava compiler, the generated Jasmin code is for-
warded to a rather permissive pretty-printer that only locally applies
formatting rules that do not capture nor rely on the hierarchical
structure of the tree. We suspect that the errors we found remained
hidden until now because the pretty-printer accepts these ill-formed
syntax trees and emits syntactically correct concrete Jasmin syn-
tax. For example, the trees LabelRef(end) and end are pretty-printed
to the same string. Furthermore, we believe that the relatively low
severity of the defects we found is due to compiler having been
heavily tested prior to this evaluation. We believe that the high num-
ber of uncovered bugs to be indicative of the prevalence of bugs in
other code generators that use abstract syntax.

In different application scenarios, the bugs we found could have
been severe. Especially, forwarding ill-formed code to another pro-
gram transformation, for example a byte-code verifier or optimizer,
may lead these tools to fail. Such bugs are very hard to track down,
because a developer needs to manually retrace the data flow of the
generated program to discover where the ill-formed term was orig-
inally constructed. Typesmart constructors reject ill-formed pro-
grams right away when they are constructed. This provides precise
and early feedback to developers.

6.2 Language extensions of Haskell and Java
We applied typesmart constructors to language extensions devel-
oped with SugarHaskell [10] and SugarJ [8], which both are de-
veloped as instances of our framework for syntactic language ex-
tensibility [9]. This led to the discovery of a number of bugs in

247

http://jasmin.sourceforge.net

previously developed and tested language extensions. We describe
the errors we found below.

In a SugarHaskell language extension that introduces special
syntax for “idiomatic brackets”, we found a bug related to construc-
tor and variable symbols in Haskell. At many places, the Haskell
grammar distinguishes constructor symbols (starting with an upper-
case character) from variable symbols (starting with a lower-case
character). We failed to retain this distinction in our desugaring.
We had to rewrite the production of the language extension and the
desugaring to retain this distinction:

"(|" Exp Qop Exp "|)" -> Exp {"IdiomBrack"}
 "(|" Exp Qvarsym Exp "|)" -> Exp {"VarIdiomBrack"}

<apply-effect> (BinCon(op), [e1, e2])
 <apply-effect> (BinOp(op), [e1, e2])

The first change restricts the production for idiomatic brackets to
only permit variable symbols, and the second change designates
this symbol as a user-defined operator instead of a constructor in
the generator. Would we break this distinction between constructors
and variables (as the original code did), this may have far-reaching
consequences. For example, subsequent optimizations may assume
that constructor calls can be executed cheaply, whereas regular
function calls should be inlined or are subject to further optimiza-
tion if they are recursive. An optimization that transforms the pro-
gram accordingly would probably fail. Our typesmart constructors
notified us of the error immediately when the program was gener-
ated, instead of silently failing such that the error could have only
been noticed when a generated and optimized program fails to per-
form as fast as expected.

Another two errors occurred in auxiliary functions that con-
struct Haskell terms using fold functions. In the first case, we tried
to construct a qualified module identifier from a list of strings
using foldr1 from the standard Stratego library. This failed be-
cause foldr1 passes a singleton list containing the last list ele-
ment to the argument functions. However, our function expected
the last list element directly, and thus failed to unpack the sin-
gleton list. This led to the construction of the ill-formed term
QModId("Control", ["Applicative"]). The revised version cor-
rectly generates QModId("Control", "Applicative").

foldr1(id, \(x,y) -> QModId(x,y)\)
 foldr1(\[x] -> x\, \(x,y) -> QModId(x,y)\)

In the second case, we tried to construct a pair-wise sequence of
toplevel declarations from a list of declarations. This failed because
we used foldr instead of foldr1 to prevent the empty list ending up
as a declaration.

foldr(id,\(x,y) -> TopdeclSeq(x,y)\)
 foldr1(\[x] -> x\,\(x,y) -> TopdeclSeq(x,y)\)

Finally, similar as in the MiniJava compiler, we found a few
instances of missing constructor applications that were supposed to
wrap expression literals, variable symbols in expressions, etc.

We also applied typesmart constructors to three Java extensions
implemented with SugarJ: tuple notation, lambda expressions, and
literal XML. We did not discover any additional syntactic errors in
code generated from these extensions for our test programs. Since
we only used a handful of test inputs for our language extensions,
it might well be that the test coverage was too low. Alternatively,
the generators indeed are safe and produce well-formed programs.

6.3 Performance benchmarks
We evaluated the performance penalty introduced by typesmart
constructors. We benchmarked the performance of a compiler from
lambda expressions to Java similar to the one in Figure 1. We
compared the execution time of the generator for three lambda

S M L
T H M T H M T H M

nocheck 0.023 - - 0.026 - - 0.033 - -
check 1.493 - - 2.153 - - 8.170 - -
cache 1.207 30 32 1.167 63 32 1.193 405 35

persist 0.015 62 0 0.02 95 0 0.04 440 0

Table 1. Benchmarks results where S, M and L are a small, a
medium, and a large input lambda expression; T, H and M are
execution times in seconds, cache hits, and cache misses.

expressions of increasing size in four scenarios: (nocheck) no type-
smart constructors, (check) non-cached typesmart constructors,
(cache) cached typesmart constructors reset prior to execution,
(persist) cached typesmart constructors with cache preservation
across transformations. We repeated each execution three times
and averaged the results, thus 36 total executions were performed.
Table 1 summarizes the timings and cache statistics observed.

We observed that typesmart constructors without any form of
caching (case check) introduce a large time penalty that is non-
linearly related to the the size of the input program. The execution
overhead is proportional to the number of terms constructed. The
execution overhead also depends on the target language and more
specifically on its syntax specification in SDF: The more alternative
productions there are per sort, the higher the average number of
checks a typesmart constructor has to perform. In our benchmark,
we generate programs of the Java language, which has a rather large
grammar of 1164 source lines of code.

Results from caching scenarios (cache) and (persist) show that
term-sort caching as described in Section 5 is not only beneficial
but necessary for performance. This necessity is clear from the ap-
proximately 50% cache hit to miss rate for even the smallest test
case and up to 92% for the largest test case. The high cache hit
ratios suggest two conclusions. Firstly, the overhead introduced by
the typesmart constructors is significant for small transformations
producing very heterogenous ASTs. For these short running trans-
formations that cover many different constructors, the caching is
unlikely to yield significant improvements. Secondly, larger trans-
formations benefit from caching after the initial period required to
fill up the cache. Furthermore, results from scenario (persist) con-
firm that the typesmart term factory does not induce any overhead
by itself.

In future work, we want to investigate the application of hy-
brid analysis to reduce the runtime overhead of typesmart con-
structors. In many cases, typesmart constructors can be checked
statically based on partial information. In particular, we can stat-
ically check syntax trees that occur literally in a transformation.
Even in build patterns that integrate dynamically computed trees
into a static skeleton, we can check the skeleton except for the im-
mediate vicinity of the dynamic data. We expect that hybrid analy-
sis can significantly reduce the runtime overhead of typesmart con-
structors while providing the same guarantees and supporting the
same flexibility for transformation languages.

7. Discussion
In this section, we reflect on typesmart constructors and discuss
support for potential problematic scenarios, additional application
areas, and future extensions of the concepts presented in this paper.

7.1 Mixing typesmart and non-typesmart constructors
Typesmart rely on the assumption that (i) terms are built bottom-up
and that (ii) subterms are built via typesmart constructors as well.
While the first assumption is ubiquitous for the construction of tree-
shaped data, the second assumption may fail to hold in some sce-
narios. For example, a legacy transformation libraries may employ

248

internal, intermediate representations that are not accompanied by
typesmart constructors. Multiple issues can arise when using such
a legacy library together with a library that employs typesmart con-
structors.

First, if a non-typesmart term is used as a typesmart constructor
argument, the argument is going to be rejected because it lacks a
sort annotation. Most likely, this behavior is intended and correctly
notifies the programmer that an unexpected term ended up as argu-
ment to the typesmart constructor. In some rare cases, however, it
is possible that the unchecked argument in fact is well-formed and
adheres to the expected sort. For example, this happens in Spoofax
when a term is deserialized from an external ressource (e.g., loaded
from a file). To ensure that the term indeed adheres to the sort re-
quirement of the typesmart constructor, we can simply rebuild (that
is, clone) it in the current execution using a typesmart term fac-
tory. If the term is well-formed, this must succeed and the term can
afterwards be used like any other checked term.

Second, the legacy library might try to construct terms with
typesmart constructors that the second library introduced. Since
the legacy library was not aware of the additional constraints, it
may attempt to temporarily create ill-formed terms. For example,
some existing Stratego pretty-print libraries operate by incremen-
tally stringifying a term bottom-up: Plus(Plus(1, 2), 3) transforms
to Plus("1+2", 3), which is illegal since the first argument of Plus is
not of expression sort. For libraries that produce ill-formed interme-
diate terms but can be trusted to eventually provide well-formed re-
sult terms, we added a primitive second-order Stratego transforma-
tion finally-typesmart(s). This transformation takes another trans-
formation s as argument and executes it in an execution context
with a standard term factory that does not perform any typesmart
syntax checking. This allows us, for example, to call legacy pretty-
print libraries that eventually yield a simple string. After transfor-
mation s yields a resulting tree, finally-typesmart checks the well-
formedness of the generated tree by rebuilding (cloning) it as de-
scribed in the previous paragraph.

Third, another problem occurs if the legacy library internally
uses a constructor that is independently introduced as a typesmart
constructor in the new library. To ensure composability of inde-
pendently declared constructors, we introduced alternative sorts in
Section 3: All equally-named constructors are represented by a sin-
gle typesmart constructor that, given the actual argument terms, re-
turns a term with all valid result sorts as alternatives. This pattern
fails when two equally-named constructors exist but only one of
them is typesmart. As described in Section 5, the typesmart term
factory will execute the one typesmart constructor independent of
which constructor was intended to be used. Thus, the typesmart
constructor shadows the non-typesmart one. If these constructors
do not incidentally expect the same argument sorts, the transfor-
mations of the legacy library are bound to fail. We have no clear
solution for this scenario so far. One possibility might be to limit
scope of typesmart constructors such that the legacy library is not
included. We plan to further investigate the integration typesmart
and non-typesmart transformations in our future work.

7.2 Typesmart constructors in OO languages
In this paper, we mainly explored the application of typesmart
constructors in the transformation language Stratego. However, the
ideas behind typesmart constructors can be applied in any language
with a notion of construction. In particular, typesmart constructors
can be used in object-oriented (OO) languages.

In dynamically typed OO languages such as Ruby, Python, or
JavaScript, arguments of constructors are not checked at object-
creation time at all, but only when a member of an argument is re-
quired. When encoding the abstract syntax of a programming lan-
guage as a class hierarchy in a dynamically typed OO language,

data Annotated a = Annotated { val :: a, freevars :: [String] }
put-freevars a vars = Annotated a vars

data Exp = Var String | Lam String AExp | App AExp AExp
type AExp = Annotated Exp

var :: String -> Annotated Exp
var s = put-freevars (Var s) [s]

lam :: String -> Annotated Exp -> Annotated Exp
lam s e = put-freevars (Lam s e) (delete s (freevars e))

app :: Annotated Exp -> Annotated Exp -> Annotated Exp
app e1 e2 = put-freevars (App e1 e2)

(freevars e1 ‘union‘ freevars e2)

finalize :: Annotated Exp -> Either Exp String
finalize e = case freevars e of

[] -> Left (val e)
xs -> Right ("Error: free variables " ++ show xs)

Figure 5. Typesmart constructors in Haskell that guarantee closed
terms (no free variables).

we can use typesmart constructors to check the argument types at
object-creation time. We can even allow the class hierarchy to de-
viate from the abstract syntax by again relying on annotations to
store an object’s sort (implemented as a member of the object).
Moreover, the instrumentation of the Stratego runtime system (Sec-
tion 5) can be mirrored for other languages to transparently apply
typesmart constructors when available and to cache the checking of
syntax sorts. This way, existing generators can remain unchanged
and we can ensure the invariant that all objects that represent pro-
grams are well-formed with respect to the syntactic constraints of
the language. This enables safer metaprogramming in dynamically
typed OO languages. Furthermore, typesmart constructors can also
be useful in statically typed OO languages if the class hierarchy is
less precise than the syntactic constraints we want to enforce.

7.3 Mixing concrete and abstract syntax
As illustrated in Section 1, the use of concrete syntax in genera-
tion templates can preclude some well-formedness issues that arise
when using abstract syntax. However, concrete syntax alone cannot
guarantee the generation of syntactically well-formed code because
spliced program fragments must be checked to match the expected
sort.

In Stratego, a generation template that uses concrete syntax is
preprocessed into a generation template that uses the correspond-
ing abstract syntax [26]. Since the preprocessed template uses reg-
ular constructors, the modified Stratego runtime system would im-
pose typesmart constructors also for those subterms where concrete
syntax guarantees well-formedness. However, it is fairly straight-
forward to modify the preprocessor for concrete-syntax templates
such that only spliced program fragments are checked, whereas all
other subterms are built without run-time checking. Indeed, this re-
sembles a hybrid analysis that can significantly improve run-time
performance for transformations that employ lots of concrete syn-
tax in generation templates.

7.4 Typesmart constructors for semantic constraints
Eventually, we want to use typesmart constructors not only to
enforce syntactic constraints of a language, but also to enforce
semantic constraints. We want to guarantee that only programs
can be generated that adhere to semantic properties of a language
such as name resolution or type checking. Syntactic constraints are

249

relatively easy to enforce because they are context-free. This means
that we can check whether a term is well-formed only by inspecting
the term; we need no knowledge about how the term is used in
different contexts. Semantic properties tend to be context-sensitive
in nature. For example, for type checking we cannot give a final
answer when only seeing a variable term. It depends on whether
this variable is bound and used with the same type consistently.

Typically, semantic properties are enforced by traversing a term
top-down. This way, it is possible to keep track of the context while
going down. For example, a type checker keeps track of the bound
variables and their types. When reaching a variable term, it suffices
to look up the variable type in the accumulated context. However,
we want to check programs while they are generated, and programs
are generated bottom-up.

While the investigation of typesmart constructors for semantic
constraints is not the focus of our present work, we discuss some
early ideas here. First, since we cannot change the order in which
terms are generated, we must adapt the checking of the semantic
properties. Second, to make the order of checking semantic prop-
erties independent of the order in which knowledge about the pro-
gram becomes available, we want to use a constraint system as ex-
plored before by Miao and Siek [19]. A constraint system has the
advantage that additional constraints can be generated at any time.
Nevertheless, whenever a new constraint is added to the constraint
system, we can test whether the current problem is still satisfiable.
This way, we hope to find ill-formed programs as soon as a con-
straint violation manifests, while allowing required knowledge for
saturating constraints to emerge later on during the program gener-
ation.

For example, consider the Haskell program in Figure 5 that
implements three typesmart constructors to ensure that generated
lambda-calculus programs are closed terms, that is, they do not con-
tain free variables. This is a simple, but context-sensitive property.
Essentially, the construction of a term always yields the constructed
term and a residual constraint system that has to be satisfied by
the surrounding context. In our example, the residual constraints is
simply a list of free variables, that have to be bound before the term
conforms to the semantic property of being closed. Every occur-
rence of a variable adds a constraint. Every occurrence of a lambda
saturates a constraint. As soon as a term has an empty list of free
variables, it is well-formed. Otherwise, we never know whether ad-
ditional context becomes available later on or whether the term is
indeed ill-formed. To this end, we defined a function finalize that
enforces the saturation of all constraints and reports an error other-
wise. In our future work, we want to investigate whether typesmart
constructors can be effectively used for enforcing semantic proper-
ties when generating programs.

8. Related Work
Using smart constructors to enforce data invariants has a long tra-
dition and is a popular idiom in functional programming. The use
smart constructors goes at least back to Stephen Adams, who used
smart constructors to ensure tree balancing in the definition of an
efficient set representation [1]. Our work on typesmart construc-
tors goes considerably beyond traditional smart constructors: First,
we allow typesmart constructors to annotate the constructed trees,
which enables checking of data invariants without recursing into
subtrees. Second, we integrate support for typesmart constructors
into the run-time system to globally and transparently enforce in-
variants.

Smart constructors can also be used to implement local opti-
mizations such as constant folding. For example, Elliott, Finne, and
De Moore use optimizing smart constructors to compile the em-
bedded language Pan [6]. In contrast, typesmart constructors must
either fail or behave exactly as the corresponding regular construc-

tor. Thus, typesmart constructors cannot be used to implemented
optimizations directly. However, optimizing constructors call regu-
lar constructors after optimization has finished. By replacing these
regular constructors with typesmart constructors (either manually
or transparently by our run-time system), it is possible to combine
the benefits of optimizing constructors and typesmart constructors.

Most related approaches for guaranteeing the syntactic or
semantic well-formedness of generated programs significantly
restrict the expressiveness of the metaprogramming language.
For example, MetaML [22] supports type-safe run-time stag-
ing, MacroML [12] supports type-safe compile-time staging, and
SOUNDEXT [18] supports type-safe compile-time staging based
on user-defined type rules. However, the expressiveness of the em-
ployed transformation languages is limited: MetaML and MacroML
support no inspection of input terms; SOUNDEXT supports inspec-
tion but requires small-step rewrite rules and cannot handle generic
traversals. Language embeddings in form of generalized algebraic
data types do not support flexible traversal and generation patterns
as well as language composition.

To address metalanguages with sophisticated metalanguage fea-
tures such as generic traversals or generating programs of com-
posed languages, we explore the application dynamic analyses. In
particular, typesmart constructors can be used for dynamic analysis
in any metaprogramming system that has or can be retrofitted with
a notion of term construction. Furthermore, typesmart constructors
are independent of high-level language features such as generic
traversals, because eventually all program generation is handled by
term constructors.

Static checking of syntactic language constraints. The need
for dynamic checking of term well-formedness is caused by
the introduction of generic traversal strategies that do not fit in
traditional static type systems. Traditional algebraic specifica-
tion/rewrite languages such as OBJ [14], ASF [23], and later
Maude [5] are statically typed. However, these languages have
limited expressiveness that can be handled by type systems with
first-order types extended with variations on subtyping such as
injections and order-sorted algebra. For example, in ASF+SDF
function signatures are defined with grammar productions, such as
"compile" "(" DslExp ")" -> JavaExp. Rewrite rules (equations)
are typechecked by parsing, avoiding the need for dynamic type
checking. However, the first-order nature of these type systems
does not admit the definition of generic, reusable transformation
functions, leading to boilerplate code for e.g. traversals. Exten-
sions such as ELAN’s [3] congruence operators and ASF’s traver-
sal functions [24] fit within the first-order type system, but thereby
limit the traversals that can be expressed.

Rascal [17] is the successor of ASF+SDF. Instead of defining
transformation functions as extension of the object grammar, it
provides a separate statically typed general-purpose language with
domain-specific features to express metaprogramming. Rascal sup-
ports generic traversals via a built-in visitor pattern that allows the
modification of the visited tree. Rascal’s type system requires that
the modified tree component has the same type as the original one.
While this ensures that all generated trees are syntactically well-
formed, it limits the flexibility of the transformation because it is
not possible to transform a tree from one type to another.

The generalized (traversal) strategies of the Stratego [27] lan-
guage provide an expressive and flexible transformation language,
but is not covered by static type systems. This paper provides an
approach to catch syntactic type errors in Stratego programs using
a programmable dynamic type system.

Template engines. Template engines such as StringTemplate and
Xpand generate code by directly composing strings. While these
engines may guarantee type-safe input access, no checks are done

250

on the output. Repleo [2] is a template engine that does provide syn-
tactic guarantees about the output generated by templates. Partly
this is based on the concrete object syntax approach also applied
in ASF+SDF. This approach is extended by reparsing the result of
strings that are substituted into the holes of a template. In contrast,
the approach in this paper is based on tree rewritings, where the
syntactic category of intermediate trees does not change and, thus,
does not have to be rechecked. Repleo provides an interesting mix
of static and dynamic analysis. Static analysis for parsing the tem-
plate modulo splices, and dynamic analysis for checking the spliced
strings. Our typesmart constructors can benefit from such a hybrid
analysis as well, which could be achieved by partially evaluating
the application of type smart constructors in statically known term
fragments.

Stratego’s concrete object syntax [26] provides partial static
checking of syntactic templates in rewrite rules by parsing term
fragments written in the concrete syntax of the object language.
However, this technique fails to check the composition of term frag-
ments. The dynamic approach in this paper checks all constructed
terms and is complementary to concrete-syntax templates.

TemplateHaskell [20] is a template engine for Haskell. It pro-
vides syntactic safety via algebraic data types. Templates ensure
scoping and type-safety statically up to spliced values, which are
defined in a quotation monad that only ensures referential trans-
parency statically and defers type checking until after the outermost
splice has been computed.

Dynamic analysis. Miao and Siek explore dynamic type check-
ing in the context of metaprogramming [19]. After every evalua-
tion step of the metaprogramming language, they check the type
of the generated code artifact by collecting and resolving con-
straints incrementally. Miao and Siek apply their technique in
an idealized metaprogramming language [13] that resembles C++
metaprogramming and does not support materialization, introspec-
tion, or transformation of programs as data (e.g., abstract syntax
trees cannot be manipulated directly). For this reason, the ques-
tion of syntactic well-formedness does not even arise. In contrast,
we explore dynamic checking of language-specific constraints in
metaprogramming systems that permit arbitrary manipulation of
code.

The format-check tool of Stratego/XT [4] checks terms
against a signature by means of a full term traversal. This can be
applied after a transformation or between stages of a transforma-
tion pipeline to ensure that a term conforms to the expected syntax.
This approach can be used to catch errors in transformations. How-
ever, it can be hard to trace back a signature violation to an actual
error in a transformation rule. Kalleberg and Visser [15] describe
weaving of format checkers into Stratego programs as a case study
of an experimental aspect-oriented extension of Stratego. A join-
point on term construction can be used to inject the application of
smart constructors as an alternative mechanism to our term fac-
tory replacement. In addition to the delivery mechanism, typesmart
constructors apply to all intermediate terms and use annotations
to avoid duplicate effort in analyzing the same subterms multiple
times. Moreover, we mark a term with an alternative result sort
if there is an overlap of signatures. This enables us to check and
annotate terms despite the lack of context information.

Dynamic contracts as, for example, used in Racket [11, 21] also
provide a programmable interface for run-time checking of struc-
tures. One important difference to our work is that contracts may
not annotate the checked term. In contrast, we use annotations as a
communication channel from subterms to parents. Moreover, con-
tracts in Racket need to be manually programmed. We focus on dy-
namic analysis of metaprograms that generate other programs and
provide a generator of typesmart constructors from a language’s
syntax definition.

9. Conclusion
We propose a novel approach for safe metaprogramming using dy-
namic analyses and typesmart constructors. A dynamic analysis is
relatively easy to define since it can inspect run-time values. We
explore the application of dynamic analyses for program genera-
tion, where the analysis is executed at program-construction time
and can reject a partially generated program as soon as a viola-
tion manifests. In particular, we propose typesmart constructors as
a mechanism to realize dynamic analyses for program generation.
We demonstrate how to implement typesmart constructors for val-
idating the syntactic well-formedness of generated programs and
provide a tool to derive such typesmart constructors automatically
from the syntactic definition of the target language. The caching
of typesmart syntax checks ensures moderate run-time overhead
and enables scalability to large generated programs. In our evalu-
ation, we successfully applied typesmart constructors in Spoofax
and SugarJ and found errors in preexisting program transforma-
tions.

Acknowledgments
We thank the anonymous reviewers for their helpful feedback.

References
[1] S. Adams. Functional pearls: Efficient sets–a balancing act. Func-

tional Programming, 3(4):553–562, 1993.
[2] J. Arnoldus, J. Bijpost, and M. van den Brand. Repleo: A syntax-

safe template engine. In Proceedings of Conference on Generative
Programming and Component Engineering (GPCE), pages 25–32.
ACM, 2007.

[3] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and
C. Ringeissen. An overview of elan. Electronic Notes in Theoreti-
cal Computer Science, 15, 1998.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strate-
go/XT Reference Manual, 2003–2008.

[5] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of maude.
Electronic Notes in Theoretical Computer Science, 4:65–89, 1996.

[6] C. Elliott, S. Finne, and O. De Moor. Compiling embedded languages.
Functional Programming, 13(3):455–481, 2003.

[7] S. Erdweg. Extensible Languages for Flexible and Principled Domain
Abstraction. PhD thesis, Philipps-Universiät Marburg, 2013.

[8] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In Proceedings of Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 391–406. ACM, 2011.

[9] S. Erdweg and F. Rieger. A framework for extensible languages. In
Proceedings of Conference on Generative Programming and Compo-
nent Engineering (GPCE), pages 3–12. ACM, 2013.

[10] S. Erdweg, F. Rieger, T. Rendel, and K. Ostermann. Layout-sensitive
language extensibility with SugarHaskell. In Proceedings of Haskell
Symposium, pages 149–160. ACM, 2012.

[11] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In Proceedings of International Conference on Functional Program-
ming (ICFP), pages 48–59. ACM, 2002.

[12] S. Ganz, A. Sabry, and W. Taha. Macros as multi-stage computations:
Type-safe, generative, binding macros in MacroML. In Proceedings of
International Conference on Functional Programming (ICFP). ACM,
2001.

[13] R. Garcia and A. Lumsdaine. Toward foundations for type-reflective
metaprogramming. In Proceedings of Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 25–34. ACM,
2009.

[14] J. Goguen, C. Kirchner, H. Kirchner, A. Mégrelis, J. Meseguer, and
T. Winkler. An introduction to OBJ 3. In Conditional Term Rewriting
Systems, pages 258–263. Springer, 1988.

251

[15] K. T. Kalleberg and E. Visser. Combining aspect-oriented and strategic
programming. Electronic Notes in Theoretical Computer Science,
147(1):5–30, 2006.

[16] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In Proceedings of
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 444–463. ACM, 2010.

[17] P. Klint, T. van der Storm, and J. Vinju. Rascal: A domain-specific
language for source code analysis and manipulation. In Proceedings
of Conference on Source Code Analysis and Manipulation (SCAM),
pages 168–177, 2009.

[18] F. Lorenzen and S. Erdweg. Modular and automated type-soundness
verification for language extensions. In Proceedings of Interna-
tional Conference on Functional Programming (ICFP), pages 331–
342. ACM, 2013.

[19] W. Miao and J. G. Siek. Incremental type-checking for type-reflective
metaprograms. In Proceedings of Conference on Generative Program-
ming and Component Engineering (GPCE), pages 167–176. ACM,
2010.

[20] T. Sheard and S. Peyton Jones. Template meta-programming for
Haskell. In Proceedings of Haskell Workshop, pages 1–16. ACM,
2002.

[21] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chap-
erones and impersonators: run-time support for reasonable interpo-
sition. In Proceedings of Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), pages 943–
962. ACM, 2012.

[22] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1-2):211–
242, 2000.

[23] M. van den Brand, A. van Deursen, J. Heering, H. De Jong, et al.
The ASF+SDF Meta-Environment: A component-based language de-
velopment environment. In Proceedings of Conference on Compiler
Construction (CC), volume 2027 of LNCS, pages 365–370. Springer,
2001.

[24] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with
traversal functions. Transactions on Software Engineering Methodol-
ogy (TOSEM), 12(2):152–190, 2003.

[25] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

[26] E. Visser. Meta-programming with concrete object syntax. In Pro-
ceedings of Conference on Generative Programming and Compo-
nent Engineering (GPCE), volume 2487 of LNCS, pages 299–315.
Springer, 2002.

[27] E. Visser, Z.-E.-A. Benaissa, and A. P. Tolmach. Building program
optimizers with rewriting strategies. In Proceedings of International
Conference on Functional Programming (ICFP), pages 13–26. ACM,
1998.

252

	Introduction and motivating example
	Typesmart constructors
	Typesmart constructorsfor syntactic language constraints
	A library for checking syntax sorts
	Example language and example term construction

	Deriving typesmart syntax constructors
	Run-time support for typesmart syntax constructors in Stratego
	Case studies
	MiniJava compiler
	Language extensions of Haskell and Java
	Performance benchmarks

	Discussion
	Mixing typesmart and non-typesmart constructors
	Typesmart constructors in OO languages
	Mixing concrete and abstract syntax
	Typesmart constructors for semantic constraints

	Related Work
	Conclusion

